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LElTER TO THE EDITOR 

Hierarchical band clustering and fractal spectra in 
incommensurate systems 

R B Stinchcombe and S C Bell 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 1 April 1987 

Abstract. An analytic derivation is given of rules exactly describing the hierarchical band 
clustering in the spectrum of Harper’s equation for various incommensurate systems. These 
rules, involving transformations of the incommensurability parameter 4, are shown to 
apply exactly for arbitrary coupling strength. The approach also provides energy scale 
factors and hence the fractal dimension D, (=OSOiO.Ol) of the self-similar spectrum 
occurring when 4 takes a fixed point value & (the golden mean). 

There is mounting numerical evidence that the empirically discovered Hofstadter rules 
[ 11 describe the hierarchical subdivision of the spectra for large classes of incommensur- 
ate [l-41 and quasicrystal systems [5-71. These rules are proved analytically in this 
letter. The calculation of energy band scaling factors and of a resulting spectrum 
fractal dimension [8] are also briefly described to illustrate further applications of the 
analytic method. 

Though a wide variety of incommensurate and quasicrystal systems may be similarly 
treated, those discussed here are the incommensurate systems described by Harper’s 
equation [2-4,9-113 

2a.A’” ~os2an~+A-”~(u , , ,+u , - , )  = EU,.  (1) 
This equation was first given as a one-dimensional reformulation of the eigenvalue 

problem for electrons in a two-dimensional crystal in a magnetic field. The basic 
incommensurability parameter 4 is there the (fractional part of the) number of flux 
quanta through a unit cell. Harper’s equation also provides the tight-binding descrip- 
tion of electrons in the presence of a charge density wave [12]. It also arises in 
connection with phonons in modulated structures [ 131 or in other situations described 
by the Frenkel-Kontorova model [14,15] and also in special problems such as super- 
conducting networks [16,17], etc. In all these cases 4 controls the structure of the 
spectrum. 

Numerical investigations of Harper’s equation [ 13 (in relation to Bloch electrons 
in a field), for the special case A = 1, provided the well known ‘butterfly’ spectral 
diagram giving the allowed energies E against 4. It was noticed that, for any given 4, 
the spectrum is separated by two principal gaps into a ‘centre’ band and two outer 
(‘side’) bands; each of these contains gaps of smaller size and is like a reduced version 
of the full band at a transformed value of 4 equal to R ( 4 )  for each side band and to 
S(4)  for the centre band, where [l] 

N4) = {1/4)  4 < $  N4) = R(1- 4 )  (2) 
S ( 4 )  = {4/(1-24))  4 - 4  S ( 4 )  = S(1- 4 )  (3) 
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where {x} denotes the fractional part of x. These ‘clustering rules’ imply the hierarchical 
nature of the ‘butterfly’ diagram. Hierarchical band splittings had previously been 
suggested [ 181 to arise from the continued fraction representation of 4. However, the 
resulting clustering is not quantitatively consistent with (2) and (3), which seem to 
correctly describe the spectrum. Using existing numerical data [ 51 the clustering rules 
can be observed to also apply to the spectrum of a quasicrystal model. 

Our main aim is to show how the hierarchical spectrum develops and to derive the 
fundamental rules (2) and (3) for Harper’s equation. The essential steps in the 
development are very general: it transpires that (2) and (3) describe the clustering for 
any A (not just A = 1); moreover, the approach applies to any system with two basic 
periodicities and also to quasicrystal models [ 191. It can also provide analytic estimates 
of energy band and gap scaling factors, which are in agreement with our [13,19] and 
previous [2,3] numerical work, and also of fractal dimensions associated with the 
spectrum. 

The approach is based on the treatment of (1) by a degenerate perturbation method 
similar to that in nearly free electron band theory, but to arbitrary order in A. A dual 
transformation [lo], related to a gauge change in the Bloch electron-in-field problem, 
takes (1) into an identical equation with A +. A-’. So the perturbation theory applies, 
and gives related results, in both limits of A small and A large. Moreover, in the k 
space cataloguing of the sequence of gaps used here, the gap positions and all the 
successive results leading to (2) and (3) are independent of A, so the description is 
not limited to A small or A large. This conclusion can be supported by periodicity 
arguments of the type used in Bloch’s theorem in simple lattice systems. 

The unperturbed (‘hopping’) term from (1) is diagonal in k space and the associated 
unperturbed energy is E,,(k) = 2 A - ” *  cos k ;  the perturbation provided by the first term 
then links states with wavevectors differing by 27~4. A gap occurs in leading order by 
virtue of the coupling of the degenerate states k = *TC$ or k = * T (  1 - +), where a 
reduced zone description is being employed. This ‘principal gap’ (leading order in 
perturbation theory) separates the upper side band (the k space interval (-7~4, @)), 
the centre band (interval (-7~(l- +), -7~4) and (7~4, ~ ( 1 -  4))) and the lower side 
band (the remainder of the reduced zone). For the present we take the case 4 <4: the 
case 4 < 4 < 1 is similar with + everywhere replaced by (1 - 4 ) .  

To obtain the gap sequence, higher-order degenerate perturbation theory is now 
required. In mth order, the perturbation link states whose k vectors differ by 217~4, 
where IS m. Only the case 1 = m provides new splittings not already present in lower 
order, and the associated degenerate states linked by the perturbation, and hence also 
the new gaps, are in mth order at 

k = *.n{m.rr}, * T (  1 - { m 4 } )  (4) 

in the reduced zone. The k labels (4) of the degenerate states linked in mth order can 
be obtained by ‘walking’ m steps of length 7~4 to left or right from the points n?r about 
which the unperturbed energy is symmetric, where n is any integer such that one arrives 
in the reduced zone. Since m gives the order of the perturbation theory in which these 
splittings arise, the gaps decrease with increasing m. The mth-order gap is at values 
*2A-”’ cos mn+ of the unperturbed energy, which gives a family (members labelled 
by m )  of curves of energy plotted against +. Non-degenerate perturbation theory shifts 
(e.g. from the Brillouin-Wigner method used later here to obtain energy scale factors 
and hence the fractal dimension of the spectrum) will distort the family, keeping for 
each value of + the energy ordering of the different members. Such a distortion is 
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enough to produce curves m = 1 , 2 , .  . . , following the principal gap, the next largest 
gap, and so on, in the butterfly diagram, showing that the approach contains the 
essential features of the gap ordering. 

To discuss the hierarchical relationship of gaps, we consider the subgaps which 
occur in the side and centre bands, using the 'walk' procedure described above. These 
gaps occur in the upper side band in mth-order ( m  2 2) degenerate perturbation theory 
if m steps of .rr+ to right or left from T n r  (for some non-negative integer n related 
to m )  arrive at k = *(mm$ - nn) lying in the interval (-TA m#~) corresponding to the 
upper side band, i.e. when the integers m and n satisfy 

( 5 )  

The corresponding equation for the subgaps in the lower side band has n shifted 
by 1, while that for the centre band is 

(6) 

where N (  n) = n or n - 1. These equations are of a type occurring in number theory 
in connection with Diophantine approximations [20]. Using the variable 

n l 4 - l ~  m < n / + +  1. 

N ( n ) / + +  1 < m < ( N ( n ) +  1)/4 - 1 

x = 4 / 1 ( 1 - 2 4 )  (7) 

and denoting the integer m - 2 N - 1 by p ,  (6) becomes 

N < px < N + 1 .  (8) 

If [y] denotes the integer part of y, the solution of (8) is clearly N = [ px]. It follows 
that ( 6 )  is solved by 

m = p + 2 [ p x ] + l  (9) 

where p can be any non-negative integer. Hence the gaps in the centre subband occur 
at 

Similarly the solution of ( 5 )  is clearly m = [ n / 4 ] ,  [ n / 4 ]  + 1,  where n is any integer, 
so the resulting gaps in the upper side band occur at 

k = * ( m r 4  - n.rr) = *m-#4n{1/4}), - { n { 1 / 4 } 1 )  (12) 

using ( 1  1 a, b ) .  
We now carry out rescalings to take the k space region occupied by a given subband 

into the region spanned by the full band. For the upper side band this involves division 
of k by 4 to obtain k where (using (12)) 

k =  k / 4  = * d n { 1 / 4 } } ,  f d l  -{n{l /4}}) .  (13) 
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The rescaling of k for the centre band is a shift of k,  = f a4 to bring the left and right 
sections of this subband together and division by ( 1  - 2 4 )  to dilate the composite band 
into an equivalent full band. The centre band gaps then occur (using (10)) at 

(14) k (k - ko)/( 1 - 2 4 )  = *~{p{x) I ,  * a( 1 - {P{x))) 
in the equivalent full band. 

In the rescaled side and centre bands the gaps occur, comparing (13) and (14) with 
(4), at places corresponding to equivalent full bands with 4 replaced by 4’, 4”, 
respectively, where 

4‘= R ( 4 )  = {1/41 (15) 

4”= S(4) = {XI = {4 / (1 -24)1  (16) 

( < f) and the gaps associated with (13) and (14) decrease with increasing n, p (which 
like m in (4) can be any positive integer) because (see, e.g., (9)) increasing n or p 
implies increasing order (m) in perturbation theory. Hence, for the upper side and 
central subbands at any 4 <f the gap sequence and position in k space are the same 
as in rescaled full bands at transformed values R(+) ,  S(4)  of 4. All the steps from 
(5)-( 16) generalise to ;< 4 < 1 by replacing 4 by 1 - 4 and in an obvious way to the 
lower side band. This establishes the Hofstadter clustering rules (2) and (3 )  for the 
principal subbands. 

We have shown that the full band at 4 is composed of (upper and lower) side and 
centre bands whose gap sequences are the same as those in full bands at +’= R(c#J), 
+”= S(4) ,  respectively. The same arguments can then be applied to the full bands at 
4’, 4“ and so on indefinitely. This completes the proof of the Hofstadter clustering 
rules (a more detailed account will be published in [19]). 

The formulation can be further exploited to arrive at quantitative analytically 
derived results for energy scaling factors and hence for the fractal dimension of the 
spectrum at the self-dual point [2] A = 1 at 4 values for which it is self-similar. To 
illustrate the procedure [ 191 we consider the special value 4g (=(v‘S - 1)/2 = golden 
mean). This is one of the (four) fixed points 4* of the joint scaling equations: 
4* = R ( 4 * )  = S ( + * ) .  At # J ~  the full band is composed of side and centre bands which 
have the same gap sequence as the full band itself at and so on for the hierarchy 
of subbands, so the spectrum at the fixed point A = 1,  4 = 4g (or any other 4*) is 
self-similar (a Cantor set), as illustrated in figure 1 .  If a and p are the (asymptotic) 
ratios of the widths (maximum energy less minimum energy) of a subband to, respec- 
tively, the widths of the side and central bands of which it is composed, the fractal 
dimension Df of the spectrum is given by 

M ( L )  = 2 M ( L / a ) + M ( L / P )  M (  L )  a ~~r (17) 
where M ( L )  is the measure of the spectrum. 

Accurate values of a, p are found by applying Brillouin- Wigner perturbation theory 
to obtain the spectrum E ( k ) .  The gap edges at k = 74 are dominated by the terms 
coming from the coupling of k to k - 2 a 4  which, working to order A’, gives E = 0.201, 
1.841 for the gap edges for (4, A)=(&, 1 ) .  For the upper band edge E ( k = O )  the 
couplings of k to k*2a+ contribute comparable terms, but it is sufficient to work to 
order A, resulting in E (  k = 0) = 5.01. The resulting scale factors and consequent fractal 
dimension (using (17)) are a = 7.57, p = 12.46, Df = 0.51 (4  = &, A = 1 ) .  The results 
are in good agreement with our numerical work on the Hofstadter spectrum, which 
gives a = 7.59, p = 13.73, Df= 0.496, and with a separate analytic argument [19] 
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Figure 1. An approximation to the self-similar spectrum of Harper's equation occurring 
when 4 is the golden mean, 4,. Expanded versions of side and central bands are shown 
above and below the original full band, for 4 = (an accurate rational approximant to I$&. 

suggesting Df=$, for the same 4, A. It is possible to investigate in similar ways the 
self-similar spectrum at other fixed point values 4* (e.g. d2 - 1) of the clustering rules 

The approach given above, and in particular the derivation of the clustering rules, 
is not limited to A = 1 nor to the Harper equation. A separate numerical investigation 
of the Harper spectrum has been performed [19] to confirm the applicability of the 
clustering rules for A # 1. Our treatment has yielded the exact transformation of 4 
(the Hofstadter rules) and of k (equations (13) and (14)). The latter provide, in 
Brillouin- Wigner perturbation theory, an approximate energy scaling sufficient to 
obtain the Cantor set nature of the self-similar spectrum and its fractal dimension, etc. 
The scaling of the parameter A is the remaining ingredient for a full renormalisation 
group transformation of the system [ 191 from which wavefunction scaling properties 
and the localisation transition can, in principle, also be obtained [ll]. Finally, a related 
derivation of clustering rules for other incommensurate systems and quasicrystal models 
will be presented elsewhere [19]. 

~191. 
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